RNA polymerase specificity of mRNA production and enhancer action.

نویسندگان

  • M A Lopata
  • D W Cleveland
  • B Sollner-Webb
چکیده

To examine the RNA polymerase (EC 2.7.7.6) specificity of RNA maturation/utilization and transcriptional enhancement, we constructed a chimeric plasmid (pPolI-CAT) in which a promoter for mouse rRNA gene transcription was placed adjacent the coding sequences for chloramphenicol acetyltransferase (CAT; EC 2.3.1.28). A number of other constructs, including plasmids also containing a murine sarcoma virus enhancer or lacking any natural eukaryotic promoter sequences, were also prepared. In apparent agreement with earlier conclusions that an RNA polymerase I transcript can act as a messenger RNA, transient transfection of mouse L cells with pPolI-CAT yielded both high levels of transcription from the RNA polymerase I promoter and enzymatically active CAT protein. However, further examination revealed that CAT protein is not translated from RNA that begins at the normal rRNA transcription initiation site. Polysomal RNA is devoid of such RNA and instead consists of CAT-encoding transcripts that begin elsewhere in the mouse ribosomal DNA (rDNA) region. Since transcription of these aberrant RNAs is stimulated by the addition of a murine sarcoma virus enhancer segment, they are probably transcribed by RNA polymerase II. Transcripts that map to the authentic rRNA start site are not similarly enhanced. Moreover, unlike the RNAs deriving from the rRNA initiation site, these aberrant RNAs are more stable and the level of translatable CAT transcripts is suppressed by inclusion of larger segments of the rDNA promoter regions. Fortuitously initiated mRNAs are also formed in the absence of any natural eukaryotic promoter sequence. From these data we conclude that there is no evidence that normal RNA polymerase I transcription yields functional mRNA and that transcriptional enhancement appears to be RNA polymerase specific.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro.

Although the human U2 and U6 snRNA genes are transcribed by different RNA polymerases (i.e., RNA polymerases II and III, respectively), their promoters are very similar in structure. Both contain a proximal sequence element (PSE) and an octamer motif-containing enhancer, and these elements are interchangeable between the two promoters. The RNA polymerase III specificity of the U6 promoter is co...

متن کامل

A protein-induced DNA bend increases the specificity of a prokaryotic enhancer-binding protein.

Control of transcription in prokaryotes often involves direct contact of regulatory proteins with RNA polymerase from binding sites located adjacent to the target promoter. Alternatively, in the case of genes transcribed by Escherichia coli RNA polymerase holoenzyme containing the alternate sigma factor sigma54, regulatory proteins bound at more distally located enhancer sites can activate tran...

متن کامل

Engagement of the Lewis X antigen (CD15) results in monocyte activation.

We previously reported that monocyte adhesion to tumor necrosis factor-alpha (TNF-alpha)-treated endothelial cells increased expression of tissue factor and CD36 on monocytes. Using immunological cross-linking to mimic receptor engagement by natural ligands, we now show that CD15 (Lewis X), a monocyte counter-receptor for endothelial selectins may participate in this response. We used cytokine ...

متن کامل

Enhancer RNA facilitates NELF release from immediate early genes.

Enhancer RNAs (eRNAs) are a class of long noncoding RNAs (lncRNA) expressed from active enhancers, whose function and action mechanism are yet to be firmly established. Here we show that eRNAs facilitate the transition of paused RNA polymerase II (RNAPII) into productive elongation by acting as a decoy for the negative elongation factor (NELF) complex upon induction of immediate early genes (IE...

متن کامل

Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis

Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 18  شماره 

صفحات  -

تاریخ انتشار 1986